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Abstract—A multiplier has a significant impact on the speed
and power dissipation of an arithmetic processor. Precise results
are not always required in many algorithms, such as those
for classification and recognition in data processing. Moreover,
many errors do not make an obvious difference in applications
such as image processing due to the perceptual limitations
of human beings. Error-tolerant algorithms and applications
have promoted the development of approximate multipliers to
tradeoff accuracy for speed, implementation area and/or power
efficiency. This paper briefly reviews the current designs of
approximate multipliers and provides a comparative evaluation
of their error and circuit characteristics. Image sharpening is
performed using the considered approximate multipliers to assess
their performance in such applications.

Index Terms—Approximate computing, Multiplier, Accuracy

I. INTRODUCTION

Arithmetic units such as adders and multipliers are key com-
ponents in a logic circuit. The speed and power consumption of
arithmetic circuits significantly influence the performance of a
processor. High-performance arithmetic circuits such as carry
look ahead adders (CLAs) and Wallace tree multipliers have
been widely utilized. However, traditional arithmetic circuits
that perform exact operations are encountering difficulties in
performance improvement. Approximate arithmetic that allows
a loss of accuracy can reduce the critical path delay of a circuit.
Since most approximate designs leverage simplified logic, they
tend to have a reduced power consumption and area overhead.
Thus, approximate arithmetic is advocated as an approach to
improve the speed, area and power efficiency of a processor
due to the error-resilience of some algorithms and applications
[1].

As an important arithmetic module, the multiplier has been
redesigned to many approximate versions. The often conflict-
ing advantages and disadvantages of these designs make it
difficult to select the most suitable approximate multiplier
for a specific application. Thus, approximately redesigned
multipliers are reviewed in this paper and a comparative
evaluation is performed by considering both the error and
circuit characteristics.

II. REVIEW AND CLASSIFICATION

Generally, a multiplier consists of stages of partial product
generation, accumulation and final addition. The commonly
used partial product accumulation structures include the Wal-
lace, Dadda trees and a carry-save adder array. In a Wallace
tree, log2(n) layers are required for an n-bit multiplier. The
adders in each layer operate in parallel without carry propaga-
tion, and the same operation repeats until two rows of partial
products remain. Therefore, the delay of the partial product
accumulation stage is O(log2(n)). Moreover, the adders in
a Wallace tree can be considered as a 3:2 compressor and
can be replaced by other counters or compressors (e.g. a 4:2
compressor) to further reduce the delay. The Dadda tree has a
similar structure as the Wallace tree, but it uses as few adders
as possible.

For a carry-save adder array, the carry and sum signals
generated by the adders in a row are connected to the adders
in the next row. Adders in a column operate in series. Hence
the partial product accumulation delay of an n-bit multiplier
is approximately O(n), longer than that of the Wallace tree.
However, an array requires a smaller area and thus a lower
power dissipation due to the simple and symmetric structure.

Three methodologies are applicable to approximate a mul-
tiplier: i) approximation in generating the partial products [2],
ii) approximation (including truncation) in the partial product
tree [3]–[5], and iii) using approximate designs of adders [6],
counters [7] and/or compressors [8], [9] to accumulate the
partial products. Following this classification, existing designs
of approximate multipliers are briefly reviewed next.

A. Approximation in generating partial products

The underdesigned multiplier (UDM) utilizes an approxi-
mate 2 × 2 bit multiplier block obtained by altering a single
entry in the Karnaugh Map (K-Map) of its function [2].
In this approximation, the accurate result “1001” for the
multiplication of “11” and “11” is simplified to “111” to
save one output bit. Assuming the value of each input bit is
equally likely, the error rate of the 2× 2 bit multiplier block



is ( 12 )
4 = 1

16 . Larger multipliers can be designed based on the
2× 2 bit multiplier. This multiplier introduces an error when
generating partial products, however the adder tree remains
accurate.

B. Approximation in the partial product tree

A bio-inspired imprecise multiplier referred to as a broken-
array multiplier (BAM) is proposed in [3]. The BAM operates
by omitting some carry-save adders in an array multiplier in
both horizontal and vertical directions.

The error tolerant multiplier (ETM) [4] is divided into a
multiplication section for the MSBs and a non-multiplication
section for the LSBs. A NOR gate based control block is
used to deal with two cases: i) if the product of the MSBs
is zero, then the multiplication section is activated to multiply
the LSBs without any approximation, and ii) if the product of
the MSBs is nonzero, the non-multiplication section is used
as an approximate multiplier to process the LSBs, while the
multiplication section is activated to multiply the MSBs.

The static segment multiplier (SSM) [10] was further pro-
posed using a similar partition scheme. Different from ETM,
no approximation is applied to the LSBs in the SSM. Either
the MSBs or the LSBs of each of the operands is accurately
multiplied depending on whether its MSBs are all zeros. [11]
has shown that a small improvement in accuracy and hardware
cost is achieved compared to the ETM, thus this design is not
considered further in the comparison study.

A power and area-efficient approximate Wallace tree mul-
tiplier (AWTM) is based on a bit-width aware approximate
multiplication and a carry-in prediction method [5]. An n-
bit AWTM is implemented by four n/2-bit sub-multipliers,
and the most significant n/2-bit sub-multiplier is further
implemented by four n/4-bit sub-multipliers. The AWTM
is configured into four different modes by the number of
approximate n/4-bit sub-multipliers in the most significant
n/2-bit sub-multiplier. The approximate partial products are
then accumulated by a Wallace tree.

C. Using approximate counters or compressors in the partial
product tree

In the inaccurate counter based multiplier (ICM), an ap-
proximate (4:2) counter is proposed for an inaccurate 4-bit
Wallace multiplier [7]. The carry and sum of the counter are
approximated as “10” (for “100”) when all input signals are
‘1’. As the probability of obtaining a partial product of ‘1’ is 1

4 ,
the error rate of the approximate (4:2) counter is ( 14 )

4 = 1
256 .

The inaccurate 4-bit multiplier is then used to construct larger
multipliers with error detection and correction circuits.

In the compressor based multiplier, accurate (3:2) and (4:2)
compressors are improved to speed up the partial product
accumulation stage [12]. By using the improved compressors,
better energy and delay characteristics are obtained for a
multiplier. To further reduce delay and power, two approximate
(4:2) compressor designs (AC1 and AC2) are presented in [9];
these compressors are used in a Dadda multiplier with four
different schemes. Approximate counters in which the more

significant output bits are ignored, are presented and evaluated
in [13]; several signed multipliers are also implemented using
these approximate counters. As only unsigned multipliers are
discussed in this paper, the more accurate schemes 3 and 4 of
the approximate compressor based multiplier (referred to as
ACM-3 and ACM-4) in [9] are considered in the comparison.

In the approximate multiplier with configurable error recov-
ery, the partial products are accumulated by a novel approxi-
mate adder [6]. The approximate adder utilizes two adjacent
inputs to generate a sum and an error bit. The adder processes
data in parallel, thus no carry propagation is required. Two
approximate error accumulation schemes are then proposed
to alleviate the error of the approximate multiplier (due to
the approximate adder). OR gates are used in the first error
accumulation stage in scheme 1 (AM1), while in scheme 2
(AM2), both OR gates and approximate adders are used. The
truncation of 16 LSBs in the partial products in AM1 and
AM2 results in TAM1 and TAM2 respectively [14].

III. COMPARISON OF ERROR AND CIRCUIT
CHARACTERISTICS

A. Error Characteristics

The error rate (ER), mean relative error distance (MRED),
and normalized mean error distance (NMED) [15] are used
as metrics to assess the error characteristics of approximate
multipliers. ER is defined as the probability of producing an
incorrect result. MRED is the average value of all possi-
ble relative error distances (RED). RED is calculated by
RED = ED

M , where ED = |M ′−M | is the error distance, M ′

and M are the approximate and accurate results, respectively
[15]. NMED is the normalization of the mean error distance
(MED) by the maximum output of the accurate design.

Monte Carlo simulation is performed to evaluate the accu-
racy of approximate multipliers. The considered approximate
multipliers (16× 16 bit) are simulated by MATLAB with 108

random input combinations and the NMED, MRED and
ER are obtained, as shown in Fig. 1, with ascending NMED
values in Fig. 1(a) and MRED values in Fig. 1(b).

According to Fig. 1(a), most of the designs, especially
those with truncation, have large ERs. For example, ETM
and BAM result in nearly 100% error rates. However, ICM
has a relatively low ER of 5.45%, because it uses just one
approximate counter in a 4×4 bit sub-multiplier with an error
rate of only 1

256 . UDM also shows a lower ER than the other
approximate multipliers.

Among the approximate multipliers, UDM has the largest
NMED while ACM-4 has the smallest. Since only the LSBs
are approximated in ACM-4, ACM-3 and AWTM-4, they
achieve a high accuracy in terms of NMED. However, ACM-
3, ACM-4 and AWTM-4 have a low accuracy for small
operands, and they even generate non-zero product when the
accurate product is zero; this is the reason for the MREDs
to be not as small. For calculating the MRED, both input
operands are selected to be non-zero. ICM, AM2-15 and
TAM2-16 have similar values of NMED, however ICM has
the smallest MRED, while the MRED of TAM2-16 is the
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Fig. 1. A comparison of ER, NMED and MRED of the considered approximate multipliers with data sorted on (a) NMED
and (b) MRED. The parameter k follows the acronym of each approximate multiplier. For AM1, AM2, TAM1 and TAM2,
this parameter refers to the number of MSBs for error reduction and for ETM, the number of LSBs in the inaccurate part. It
is the mode number in AWTM and ACM, and the vertical broken length (VBL) for BAM.

largest. Therefore ICM has the highest accuracy in terms of
MRED, while TAM2-16 is the least accurate among these
three approximate multipliers. This indicates that multipliers
with simple truncation tend to have larger MREDs when their
NMEDs are similar. It can also be seen that ETM and BAM
have relatively large MREDs due to truncation. AWTM-1
and AWTM-2 also have very large MREDs especially when
one of the input is zero, in which case it has an infinite RED
(because of its non-zero output).

In summary, ICM is the most accurate design with the
lowest ER, MRED and moderate NMED. ACM-4, ACM-
3, AWTM-4, BAM-16, AM2-15 and TAM2-16 also show good
accuracy among all considered approximate multipliers with
both low NMEDs and MREDs. ETM, AWTM-1, AWTM-
2 and UDM are not very accurate in terms of these metrics.
Some designs may have a low NMED (e.g., BAM-18 and
AWTM-3), however their MREDs are relatively high.

B. Circuit Characteristics

The considered 16 × 16 bit approximate multipliers are
implemented in VHDL and synthesized using the Synopsys
Design Compiler (DC) based on an STM CMOS 28 nm
process. For a fair comparison, all designs use the same pro-
cess, voltage and temperature configurations and optimization
option. Both the P-channel and the N-channel transistors used
in the designs have a typical design corner with a regular
threshold voltage. The supply voltage of all designs are set to
1.0 V; the simulation temperature is 25 ◦C. Critical path delays
and areas are reported by the Synopsys DC. The power dissipa-
tion is measured by the PrimeTime-PX tool at a clock period of
4 ns with 10 million random input combinations. The accurate
Wallace multiplier (WallaceM) and array multiplier (ArrayM)
are also simulated for comparison. To reduce the effect of

the final addition, the same multi-bit adder in the tool library
(hence, the one with the best performance and most power
efficient) is utilized in all approximate multiplier designs as the
final adder. Fig. 2 shows the critical path delay, area and power
of the considered multipliers. The leakage power dissipations
for the considered designs are very low (less than 1 uW ), thus
they are not considered in the comparison.

Fig. 2(a) shows that the accurate array multiplier (ArrayM)
is the slowest and the Wallace multiplier (WallaceM) is the
most power consuming; this is consistent with the theoretical
analysis. Due to the expressively fast carry-ignored operation,
AM1/TAM1, AM2/TAM2 have smaller delays even with a
16-bit error reduction compared to the other types of de-
signs. BAM is significantly slower due to its array structure.
AWTM, UDM, ICM and ACM have larger delays than the
other multipliers, while their power consumptions show a
quite different trend. BAM consumes very low power, the
power consumptions of AWTM and ACM are in the medium
range, while UDM and ICM incur relatively high power
consumptions. ETM has small values for both delay and power
dissipation.

Fig. 2(b) indicates that a multiplier with a higher power
dissipation usually has a larger area. In terms of power and
area, ETM, TAM1/TAM2 and BAM are among the best
designs. A common feature of these designs is that they
all use truncation, which can significantly affect MRED
while NMED may not be changed as much. If most of the
inputs have large values, the error introduced by truncation
can be tolerated; thus truncation is a useful scheme to save
area and power. Otherwise, truncation-based designs may
yield unacceptably inaccurate results. Without truncation, a
multiplier whose design is approximated when generating
partial product (e.g. UDM) tends to have a large delay, power
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Fig. 2. A comparison of delay, power and area of the considered multipliers with data sorted on (a) delay and (b) power.
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Fig. 3. Power-delay products of the considered multipliers.

and area. These measures for the multiplier approximated in
the partial product tree (e.g. AWTM) are moderate, while the
multipliers using approximate counters or compressors (ICM,
ACM, AM1, AM2) require higher power and area.

The values of power-delay product (PDP) for the considered
multipliers are shown in Fig. 3 for a better overview of the
circuit characteristics. ETM, TAM1 and TAM2 have very
small PDPs due to their small values of power and delay,
while ICM and UDM are the opposite. The values of PDP for
AM1 and AM2 are in the medium range. The PDPs of BAM
vary according to the number of truncated bits.

C. Discussion

MRED and PDP are jointly considered for an overall
evaluation of the different approximate multipliers, as shown
in Fig. 4. TAM1-13, TAM1-16 TAM2-13 and BAM-18 have
both small PDPs and MREDs. Most of the other designs
have at least one major shortcoming. ICM and ACM incur
a very low error, but their PDPs are very high. ETM-8 has
the smallest PDP but a rather large MRED. UDM shows
a poor performance in both PDP and MRED. Even though
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Fig. 4. Mean relative error distances and power-delay products
of the approximate multipliers.

most BAM configurations have small PDPs, their delays are
generally large (Fig. 2); moreover, some BAM configurations
have low accuracies. AWTMs have large PDPs and only
AWTM-4 has a high accuracy.

IV. IMAGE PROCESSING APPLICATION

For further comparison, the considered approximate multi-
pliers are applied to image sharpening as an application [16].
The sharpened images are shown in Fig. 5. The multipli-
cations in the algorithm are implemented by the considered
approximate multipliers, while the division and subtraction
are accurate. The quality of images sharpened by AM2-
10, TAM2-10, ETM-8, BAM-20, AWTM-3, AWTM-2 and
AWTM-1 is not very high due to their low accuracy (i.e., by
large NMEDs and MREDs). Likewise, The multipliers with
higher accuracy (i.e., with smaller NMEDs and MREDs),
AM2-15, AM1-15, TAM2-16 and TAM1-16, show better
performance for image sharpening. As for the other images,



(a) An accurate multiplier (b) AM2-15 (c) AM1-15 (d) TAM2-16 (e) TAM1-16

(f) ICM (g) BAM-16 (h) AM2-13 (i) AM1-13 (j) ACM-4

(k) UDM (l) ACM-3 (m) TAM2-13 (n) TAM1-13 (o) BAM-17

(p) ETM-7 (q) AWTM-4 (r) BAM-18 (s) AM2-10 (t) TAM2-10

(u) ETM-8 (v) BAM-20 (w) AWTM-3 (x) AWTM-2 (y) AWTM-1

Fig. 5. Image sharpened using different multipliers. The approximate multipliers with a good tradeoff in MRED and PDP are
highlighted in bold italics.

it is difficult to distinguish the quality. Therefore, the peak
signal noise ratio (PSNR) is computed, as shown in Table I.
Moreover, the ratios of the PDP for each multiplier normalized

by the accurate Wallace multiplier are also presented. TAM1-
16 achieves an image sharpening result imperceptibly different
from the exact multiplier, but with only a 25.99% PDP of the



accurate Wallace multiplier. The image sharpening results of
TAM2-13, TAM1-13 and BAM-18 are also acceptable with
less than 30% PDP compared to WallaceM.

The PSNRs for the sharpened images show that multipliers
with smaller values of NMED and MRED perform better
in image sharpening (except for ICM and UDM). Although
ICM has the smallest values of ER and MRED among
all considered approximate multipliers, its sharpened image
does not show the best quality. This occurs because the rarely
occurred errors in ICM are very large (as per its small value of
ER); therefore very large errors lead to the obvious large white
(erroneous) areas in Fig. 5(f). UDM has very large NMED
and MRED, however the sharpened image has a PSNR
value similar to ICM.

TABLE I. Peak signal noise ratios (PSNRs) of the sharpened
images and the power-delay-product (PDP) values of the
approximate multipliers normalized by the accurate Wallace
multiplier. The approximate multipliers with good tradeoffs of
MRED and PDP are highlighted in bold.

Multiplier PSNR (dB) PDP (%)
AM2-15 57.89 57.69
AM1-15 53.56 45.74

TAM2-16 48.28 34.03
TAM1− 16 46.97 25.99

BAM-16 46.18 46.99
AM2-13 45.88 50.56
AM1-13 45.12 40.64
ACM-4 43.72 51.56
ACM-3 43.39 49.97

TAM2− 13 41.87 27.77

TAM1− 13 41.42 21.92

ICM 40.45 62.35
UDM 40.14 64.33

BAM-17 40.09 37.32
AWTM-4 38.63 44.21

BAM− 18 33.99 29.09

AM2-10 28.07 37.71
TAM2-10 27.49 18.88
BAM-20 22.06 16.62
AWTM-3 21.52 41.45
ETM-7 17.42 20.02
ETM-8 14.09 14.77

AWTM-2 8.84 39.78
AWTM-1 8.84 38.00

V. CONCLUSION

Approximate unsigned multipliers are comparatively eval-
uated for both error and circuit characteristics. Among the
considered approximate multipliers, truncation on part of the
partial products is an effective way to reduce circuit com-
plexity. However, it incurs a large ER and moderate NMED
and MRED. UDM shows a low accuracy, especially in terms
of the error distance, and a relatively high circuit overhead
because the 2×2 bit approximate multiplier is used to compute
the most significant bits and accurate adders are utilized to

accumulate the generated partial products. When truncation
is not used, multipliers approximated in the partial product
tree tend to have a poor accuracy and moderate hardware
consumption, while multipliers using approximate counters
or compressors are usually very accurate with relatively high
power dissipation and hardware consumption.

Image sharpening is used as an application to evaluate
the performance of the considered approximate multipliers.
In general, multipliers with smaller values of NMED and
MRED perform better. However, a small ER does not guar-
antee a high performance of a multiplier for image sharpening
because the error magnitude can be large.
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